
p. 1

「Python による

2 次元・3 次元

グラフィックス」

中央情報専門学校

担当：井門俊治（いどしゅんじ）

p. 2

第 1 章 Google Colab の利用と Python プログラミング

 Google Colab は Python3相当のプログラミングを行う Webベースの環境である。インストールが不

要であるため、教育用の PC 教室などでの利用に便利である。

（１）Colab 検索すると、 Colab の Web ページが開く。プログラムの作成、実行などにおいては、

Googe のアカウントへのログインが要求される。

（２）まずあたらしく「ノートブック」を開く。

（３）ノートブックの画面では、記述する部分（セル）には、プログラムを記述する「コードセル」と説明を

記述する「テキストセル」が表示される。

p. 3

（４）セルにプログラムを記述し、矢印を押すと実行される。

（５）プログラミング

＃１ まず、print 文を使う。文字が表示される。日本語も表示できる。

＃２ 繰り返しでは、for や while を用いる。繰り返しを行う部分は、「段落下げ」（インデント）で示す。

インデントの大きさは自由であるが、繰り返しの記述の部分ではインデントの大きさはそろえておく必

要がある。

Python はインタプリタ言語であり、1 行単位で解釈され、実行される。エラー

が発生した場合は、その行で「エラーメッセージ」を出して、停止する。

p. 4

#３ 分岐の場合も、if文、else 文の範囲は「：」とインデントで示す。

＃４ 関数の活用

まとまった処理には、関数を定義することができる。

p. 5

Python 自身は簡単なプログラミング言語だが、外部ライブラリなどを活用することで、広く応用する

ことができる。

組み込み関数

print 標準出力に出力

input 標準入力から 1 行読み込む

dict ディクショナリを作成

len 要素数を返す

標準ライブラリ

math 数学計算

random 乱数

datetime 日付と時間

代表的な外部ライブラリ

matplotlib データの可視化

pandas データ解析

numpy ベクトル・行列計算

scipy 科学技術計算

sympy 代数計算・数式処理

Scikit-learn 機械学習

（６）Pyhton プログラミングにおけるグラフィック機能

 ２次元のグラフィック機能としては、上記の外部ライブラリの

 matplotlib

が主要なものである。また、ほかの言語でも実現されている「タートル」（カメのアイコンが線画を描く）

も Python 用に利用できる。

 Turtle

4 年ほど前には、Turtle の機能不足を補う形で、

 TurtlePlus

が使えるようになった。今回は、この 2 つのモジュールを共に紹介する。

 3 次元グラフィックスとしては、matplotlib の 3 次元拡張版が使える。

p. 6

第２章 Turtle と TurtlePlus

（１） Turtle による 2 次元グラフィックス

 Turtle においては、「カメ(Turtle)」のアイコンが、カンバス上を移動する。ｐenup の状態の場合は、

線画を描かないが、ｐendown の場合は、移動の軌道上に線画を描く。

 まず簡単な場合として、五角形を描いてみる。

 Turtle モジュールは Colab の中では標準装備されていないため、下記の命令でインストール、取り

込み(import)する必要がある。

この操作は、セッション開始時に一度だけ実行すればよい。（ただし、以下のプログラムでは、プログ

ラム実行時に毎回呼び出している。Colab は 2 回目以降は「もうすでに用意済だよ」とメッセージを送

ってくるが、エラーではない。

このプログラムにおいては、カメの動きを目視するために移動速度(speed)は、あえて１にしている。

!pip3 install ColabTurtle

from ColabTurtle.Turtle import *

turtle graphics (draw of a pentagon)

initializeTurtle(initial_window_size=(300, 300), initial_speed=1)

color('blue')

bgcolor('lightcyan')

shape('turtle')

penup()

width(5)

setpos(100,200)

setheading(0)

pendown()

n=5

for i in range(n):

 forward(100)

 left(360/n)

penup()

setpos (40,40)

setheading(-90)

p. 7

出力結果を下記に示す。

また、n=4 とすると、四角形を描き、n=3 とすると、三角形を描く。

p. 8

（２）TurtlePlus による 2 次元グラフィックス

Turtle と TurtlePlusでは、描画機能の違いのほかに、原点、座標軸の方向が異なる。

比較のために、TurtlePlusでの五角形の描画プログラムを示す。

!pip3 install ColabTurtlePlus

from ColabTurtlePlus.Turtle import *

clearscreen()

setup(300,300)

speed(1) # カメの動きを目視するために speed を１にしている

color('blue')

bgcolor('lightcyan')

shape('turtle')

shapesize(1) # カメの大きさを変えることができる

penup()

width(5)

setpos(-50,-50) # Turtle の setpos(100,200)と同じ位置になる

setheading(0)

pendown()

n=5

for i in range(n):

 forward(100)

 left(360/n)

penup()

setpos (-110,110) # Turtleの setpos(40,40)と同じ位置になる

setheading(90)

p. 9

今度は、n=8 として八角形を描いてみる。ただし、先の五角形のプログラムのままでは、300x300 の

領域の外にはみ出すため、八角形の辺の長さを 100 から 80 に縮めている。

さらに speed(3) および shapesize(2)の変更も加えている。

!pip3 install ColabTurtlePlus

from ColabTurtlePlus.Turtle import *

clearscreen()

setup(300,300)

speed(3) # カメの動きを目視するために speed を１にしている

color('blue')

bgcolor('lightcyan')

shape('turtle')

shapesize(2) # カメの大きさを変えることができる

penup()

width(5)

setpos(-50,-50) # Turtle の setpos(100,200)と同じ位置になる

setheading(0)

pendown()

n=8

for i in range(n):

 forward(80)

 left(360/n)

penup()

setpos (-110,110) # Turtleの setpos(40,40)と同じ位置になる

setheading(90)

p. 10

（３）乱数による水玉模様

 TutlePlus では、塗りつぶし機能や円を描く関数 circle が入ったので、乱数により、色、位置、大きさ

を決めて水玉模様を描くことができる。

プログラムの実行例を下記に示す。この結果は、乱数により決めているので、実行のたびに違う結

果が得られる。

プログラムは下記に示す。

!pip3 install ColabTurtlePlus

from ColabTurtlePlus.Turtle import *

import random

clearscreen()

setup(400,400)

speed(10) # speed を 10 にして速く描画する

color('blue')

bgcolor('lightcyan')

shape('turtle')

shapesize(2)

showborder()

color("red", "yellow")

pensize(2)

for n in range(60):

 # 乱数により色を決める

p. 11

 r1=int(250*random.random())

 g1=int(250*random.random())

 b1=int(250*random.random())

 color ((r1,g1,b1))

 fillcolor((r1,g1,b1))

 penup()

 # 乱数により位置、大きさを決める

 x1=int(-200+400*random.random())

 y1=int(-200+400*random.random())

 radius1=10+int(50*random.random())

 #print(n, r1, g1, b1, x1, y1, radius1)

 setpos(x1, y1)

 pendown()

 begin_fill()

 circle(radius1)

 end_fill()

hideturtle() # カメを消す

p. 12

第３章 グラフ表示のためのライブラリ matplotlib

 先に挙げた外部ライブラリとして、グラフ表示を行うためのライブラリ matplotlib が用意されている。

これを用いたグラフ表示の例を図示する。

（１） 折れ線グラフを作成する。

 プログラムは下記に示す。y 方向の値は、リス

トであたえている。

 また、ここでは、「マーカー」を用いている。

（２） 棒グラフ(bar)を作成する。

折れ線グラフ

import matplotlib.pyplot as plt

weight = [68.4, 68.0, 69.5, 68.4, 68.6, 70.2, 71.4, 70.8,

 68.5, 68.6, 68.3, 68.4]

plt.figure(figsize=(6, 5))

plt.title("Weight", fontsize=30)

plt.xlabel("month", fontsize=24)

plt.ylabel("weight", fontsize=24)

plt.ylim(67.5, 72.0)

plt.plot (weight,marker="o", ms=20, lw=5)

マーカーのサイズ、線の太さを設定

plt.show()

棒グラフ

import matplotlib.pyplot as plt

weight = [68.4, 68.0, 69.5, 68.4, 68.6, 70.2, 71.4, 70.8,

 68.5, 68.6, 68.3, 68.4]

month = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11, 12]

plt.figure(figsize=(6, 5))

plt.title("Weight", fontsize=30)

plt.xlabel("month", fontsize=24)

plt.ylabel("weight", fontsize=24)

plt.ylim(67.5, 72.0)

plt.bar(month,weight)

plt.show()

p. 13

（３） 横棒グラフを作成する。

bar が barh に代わっている。

（４） 円グラフ

横棒グラフを作成する

import matplotlib.pyplot as plt

weight = [68.4, 68.0, 69.5, 68.4, 68.6, 70.2, 71.4, 70.8,

 68.5, 68.6, 68.3, 68.4]

month = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11, 12]

plt.figure(figsize=(6, 5))

plt.title("Weight", fontsize=30)

plt.ylabel("month", fontsize=24)

plt.xlabel("weight", fontsize=24)

plt.xlim(67.5, 72.0)

変数軸（ここではｘ軸）の値を設定

plt.barh(month,weight, color='green')

横棒グラフ

plt.show()

円グラフ

import matplotlib.pyplot as plt

value = [12, 10, 5, 6, 3, 2, 1, 2, 4, 2, 3, 1]

color1 = ['orange', 'yellow', 'green', 'blue', 'purple', 'violet', 'red',

 'lightgreen', 'lightblue', 'cyan', 'lightcyan', 'black']

label1 = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l']

print (value)

plt.figure(figsize=(8, 5))

plt.title("Pie graph", fontsize=20)

plt.pie (value, colors=color1, startangle=90,

counterclock=False, labels=label1)

plt.show()

p. 14

（５） 散布図の作成

散布図においては、マーカーを用いてい

る。ここでは、デフォールトの

marker=”o”

が使われている。すなわち、「塗りつぶし

た円」である。

（６） マーカーを用いたグラフィックス 「水玉模様」

 この「塗りつぶした円」を使うことで、先の TurtlePlusで実現した「乱数による水玉模様」のグラフィッ

クスを描くことができる。

散布図

import matplotlib.pyplot as plt

weight = [68.4, 68.0, 69.5, 68.4, 68.6, 70.2, 71.4, 70.8,

 68.5, 68.6, 68.3, 68.4]

month = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11, 12]

plt.figure(figsize=(6, 5))

plt.title("Weight", fontsize=30)

plt.xlabel("month", fontsize=24)

plt.ylabel("weight", fontsize=24)

plt.ylim(67.5, 72.0) # 縦軸の値を設定

plt.xlim(0,13)

plt.scatter(month,weight, color='green', s=300)

plt.show()

p. 15

この時のプログラムを下記に示す。

（７） マーカーの種類は多くある。

その一部を下記に示す。

散布図 乱数による水玉

import matplotlib.pyplot as plt

色の名前の設定

下記が参考になります。

https://www.colordic.org/

color_star = ['blue', 'green', 'red', 'pink', 'yellow',

 'royalblue', 'seagreen', 'khaki', 'deeppink', 'midnightblue',

 'mediumseagreen', 'hotpink', 'navy', 'mediumaquamarine',

 'darkblue', 'darkseagreen','orange', 'aquamarine',

 'palegreen', 'darkorange', 'thistle', 'linen']

plt.figure(figsize=(6, 6))

plt.xlim(0,400)

plt.ylim(0,400)

import random

for kk in range(50):

 x0=10+400*random.random()

 y0=10+400*random.random()

 length=5+200*random.random()

 icolor =int(22*random.random())

 color1 = color_star[icolor]

 plt.scatter(x0,y0,s=length*10,color=color1)

plt.show()

p. 16

この 28 個のマーカーの一覧を表示するプログラムは下記のようなものである。

species od markers

import matplotlib.pyplot as plt

色の名前の設定

下記が参考にあります。

https://www.colordic.org/

color_star = ['blue', 'green', 'red', 'pink', 'yellow',

 'royalblue', 'seagreen', 'khaki', 'deeppink', 'midnightblue',

 'mediumseagreen', 'hotpink', 'navy', 'mediumaquamarine',

 'darkblue', 'darkseagreen','orange', 'aquamarine',

 'palegreen', 'darkorange', 'thistle', 'linen']

markerss = [".", ",", "o", "v", "^", "<", ">", "1", "2", "3",

 "4", "8", "s", "p", "*", "h", "H", "+", "x", "D",

 "d", "|", "_", "None", "x",

 "$\\alpha$", "$\\beta$", "$\\gamma$"]

plt.figure(figsize=(6, 3))

plt.title("Markers", fontsize=20)

plt.xlim(0,400)

plt.ylim(0,200)

import random

for kk in range(28):

 mm = kk % 10 # 割り算のあまり（剰余）

 x0=30*(mm+1)

 y0=200-50*(int(kk/10)+1)

 length=40

 icolor =int(22*random.random())

 color1 = color_star[icolor]

 marker1 = markerss[kk]

 plt.scatter(x0,y0,s=length*10,color=color1,marker=marker1)

plt.show()

p. 17

（８） マーカーによるグラフィックス （リング）

 ここでは、マーカーとして、

 marker="*"

すなわち、「星型」を用いている。円周上にマ

ーカーを並べているが、色は乱数により決定

している。

ring of stars

import matplotlib.pyplot as plt

color_star = ['blue', 'green', 'red', 'pink', 'yellow',

 'royalblue', 'seagreen', 'khaki', 'deeppink', 'midnightblue',

 'mediumseagreen', 'hotpink', 'navy', 'mediumaquamarine',

 'darkblue', 'darkseagreen','orange', 'aquamarine',

 'palegreen', 'darkorange', 'thistle', 'linen']

plt.figure(figsize=(6, 6))

plt.xlim(-240,240)

plt.ylim(-240,240)

import random

import math

nn = 32

da = 2* math.pi / nn

for kk in range(nn):

 ang1 = da * kk

 x0=200*math.cos(ang1)

 y0=200*math.sin(ang1)

 length=600

 icolor =int(22*random.random())

 color1 = color_star[icolor]

 plt.scatter(x0,y0,s=length,color=color1,marker="*")

plt.show()

p. 18

（９） マーカーによるグラフィックス（らせん）

p. 19

spiral of stars

import matplotlib.pyplot as plt

色の名前の設定

下記が参考にあります。

https://www.colordic.org/

color_star = ['blue', 'green', 'red', 'pink', 'yellow',

 'royalblue', 'seagreen', 'khaki', 'deeppink', 'midnightblue',

 'mediumseagreen', 'hotpink', 'navy', 'mediumaquamarine',

 'darkblue', 'darkseagreen','orange', 'aquamarine',

 'palegreen', 'darkorange', 'thistle', 'linen']

plt.figure(figsize=(6, 6))

plt.xlim(-240,240)

plt.ylim(-240,240)

import random

import math

nn = 32

da = 2* math.pi / nn

dr = 1

rr = 0

for tt in range(6):

 for kk in range(nn):

 ang1 = da * kk

 rr = rr + dr

 x0=rr*math.cos(ang1)

 y0=rr*math.sin(ang1)

 length=rr

 icolor =int(22*random.random())

 color1 = color_star[icolor]

 plt.scatter(x0,y0,s=length,color=color1,marker="*")

plt.show()

p. 20

第４章 plot による線画グラフィックス

（１） 摂動のある円

x = r*cos(Θ)

y = r*sin(Θ)

0≦Θ≦2π

とすると、円が描かれる。

ここで、半径ｒが変動すると、摂動のある円

が描かれる。

右のプログラムにおいて、

半径の変動の割合 dr

変動の周波数の数 m

を変えることで、異なった図形を描くことがで

きる。

下図は、

 dr=0.6

 m=12

の場合の結果である。

plot graphics

import matplotlib.pyplot as plt

plt.figure(figsize=(6, 6))

plt.xlim(-400,400)

plt.ylim(-400,400)

import random

import math

nn = 128

da = 2* math.pi / nn

xx = [0]*(nn+1)

yy = [0]*(nn+1)

r0 = 200

dr = 0.2

m = 6

for i in range(0,nn+1):

 ang = da * i

 rr = dr*r0*math.cos(m*ang)

 x2=(r0+rr)*math.cos(ang)

 y2=(r0+rr)*math.sin(ang)

 xx[i] = x2

 yy[i] = y2

plt.plot (xx, yy, linewidth=3, color="blue")

p. 21

（２）らせん図形

円を描くときに半径ｒが次第に大きくなる

と、らせん図形となる。

plotr graphics

import matplotlib.pyplot as plt

plt.figure(figsize=(6, 6))

plt.xlim(-240,240)

plt.ylim(-240,240)

import random

import math

xx = [0]*nn*6

nn = 32

da = 2* math.pi / nn

dr = 1

rr = 0

xx = [0]*nn*6

yy = [0]*nn*6

mm = 0

for tt in range(6):

 for kk in range(nn):

 ang1 = da * kk

 rr = rr + dr

 x0=rr*math.cos(ang1)

 y0=rr*math.sin(ang1)

 xx[mm] = x0

 yy[mm] = y0

 mm = mm+1

plt.plot(xx,yy, linewidth=3)

plt.show()

p. 22

（３）特殊な摂動の円

今度の場合は、やや特殊な摂動を入れ

ている。

具体的な式は、プログラムを参照された

い。

やはり、

摂動の大きさ dr

摂動の周波数 m

を変えると、描かれる図形の形が変わっ

ていく。

各自試されたい。

plot graphics

import matplotlib.pyplot as plt

plt.figure(figsize=(6, 6))

plt.xlim(-400,400)

plt.ylim(-400,400)

import math

nn = 128

da = 2* math.pi / nn

xx = [0]*(nn+1)

yy = [0]*(nn+1)

r0 = 200

dr = 0.4

m = 5

for kk in range(0,nn+1):

 ang = da*kk

 xx[kk]=r0*math.cos(ang) + dr*r0*math.cos(m*ang)

 yy[kk]=r0*math.sin(ang) + dr*r0*math.sin(m*ang)

plt.plot (xx, yy, linewidth=3, color="blue")

plt.show()

p. 23

第 5 章 3 次元グラフィックス

（１）直交座標を用いた 3 次元図形表示

 3 次元のらせんを描くプログラムを示す。

p. 24

 # PYTHON_MATPLOTLIB_3D_PLOT_02

3 次元データの可視化

https://python.atelierkobato.com/axes3d/ より

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

Figure を追加

fig = plt.figure(figsize = (6, 6))

3DAxes を追加

ax = fig.add_subplot(111, projection='3d')

Axes のタイトルを設定

ax.set_title("Helix", size = 20)

軸ラベルを設定

ax.set_xlabel("x", size = 14)

ax.set_ylabel("y", size = 14)

ax.set_zlabel("z", size = 14)

軸目盛を設定

ax.set_xticks([-1.0, -0.5, 0.0, 0.5, 1.0])

ax.set_yticks([-1.0, -0.5, 0.0, 0.5, 1.0])

円周率の定義

pi = np.pi

パラメータ分割数

n = 256

パラメータ tを作成

t = np.linspace(0, 12*pi, n)

らせんの方程式

x = np.cos(t)*t*0.03

y = np.sin(t)*t*0.03

z = t

曲線を描画

ax.plot(x, y, z, color = "red")

plt.show()

p. 25

次は、放物面を描画してみる。

PYTHON_MATPLOTLIB_WIREFRAME

https://python.atelierkobato.com/surface/

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import axes3d

Figure を追加

fig = plt.figure(figsize = (6, 6))

3DAxes を追加

ax = fig.add_subplot(111, projection="3d")

Axes(サブプロット)のタイトルを設定

ax.set_title("Paraboloid", size = 32)

軸ラベルを設定

ax.set_xlabel("x", size = 16)

ax.set_ylabel("y", size = 16)

ax.set_zlabel("z", size = 16)

(x,y)データを作成

x = np.linspace(-2, 2, 257)

y = np.linspace(-2, 2, 257)

格子点の作成

X, Y = np.meshgrid(x, y)

高度の計算式

Z = X**2 + Y**2

ワイヤーフレームで 3 次元の放物面を描く

ax.plot_wireframe(X, Y, Z, color = "blue")

視点を仰角 15°、方位角 -60°に設定

（デフォールト値は、仰角 30°、方位角 -60）

ax.view_init(elev=15, azim=-60)

plt.show()

p. 26

今度は、z=cos(x)＊cos(y) を描いてみる。

PYTHON_MATPLOTLIB_3D_PLOT_03

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

Figure と 3DAxeS

fig = plt.figure(figsize = (6, 6))

ax = fig.add_subplot(111, projection="3d")

軸ラベルを設定

ax.set_xlabel("x", size = 16)

ax.set_ylabel("y", size = 16)

ax.set_zlabel("z", size = 16)

円周率の定義

pi = np.pi

(x,y)データを作成

x = np.linspace(-3*pi, 3*pi, 256)

y = np.linspace(-3*pi, 3*pi, 256)

格子点を作成

X, Y = np.meshgrid(x, y)

高度の計算式

Z = np.cos(X/pi) * np.cos(Y/pi)

曲面を描画

ax.plot_surface(X, Y, Z, cmap = "jet")

底面に等高線を描画

#ax.contour(X, Y, Z, colors = "black", offset = -1)

plt.show()

p. 27

（２）円筒座標を用いた 3 次元図形表示

直交座標系 (x , y , z) と円筒座標系 (r , θ , z) の間には以下の関係が成り立つ。

x = r cos θ

y = r sin θ

z = z

下図は、z=r**2 = (sqrt(x**2+y**2))**2 を描いている。

p. 28

 # PYTHON_MATPLOTLIB_WIREFRAME

https://python.atelierkobato.com/surface/

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import axes3d

Figure を追加

fig = plt.figure(figsize = (6, 6))

3DAxes を追加

ax = fig.add_subplot(111, projection="3d")

Create the mesh in polar coordinates and compute

corresponding Z.

r = np.linspace(0, 1.3, 50)

p = np.linspace(0, 2*np.pi, 50)

R, P = np.meshgrid(r, p)

Z = R**2

Express the mesh in the cartesian system.

X, Y = R*np.cos(P), R*np.sin(P)

Plot the surface.

ax.plot_surface(X, Y, Z, cmap=plt.cm.coolwarm,antialiased=False)

Tweak the limits and add latex math labels.

ax.set_xlabel('X')

ax.set_ylabel('Y')

ax.set_zlabel('Z')

仰角、方位角を設定

ax.view_init(elev=15, azim=-60)

plt.show()

p. 29

（３）球座標を用いた 3 次元図形表示

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.cm as cm

from mpl_toolkits.mplot3d import axes3d

r=1

p = np.linspace(0, 2* np.pi, 100)

t = np.linspace(0, np.pi, 100)

p, t = np.meshgrid(p, t)

x = r* np.sin(t)* np.cos(p)

y = r* np.sin(t)* np.sin(p)

z = r* np.cos(t)

plotting

fig = plt.figure(figsize=(6,8))

ax = fig.add_subplot(111 , projection='3d')

ax.set_xlim(-1,1)

ax.set_ylim(-1,1)

ax.set_zlim(-1,0.5)

ax.set_xticks([-1,-0.5, 0, 0.5, 1])

ax.set_yticks([-1,-0.5, 0, 0.5, 1])

#ax.set_zticks([-1,-0.5, 0, 0.5, 1])

ax.plot_surface(x, y, z, linewidth = .1,

edgecolor='k',cmap='jet', antialiased=True)

視点の変更、仰角・方位角の設定

ax.view_init(elev=15, azim=-60)

plt.show()

p. 30

 この球の表現において、半径ｒの値に変動を加えた時の図形を下記に示す。

パラメータの説明は、プログラムの説明時に与える。

